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An improved light beam search method is proposed to solve multiobjcetive designs of inverse problems. To guarantee a uniform 

distribution of the searched Pareto solutions, the utopia plane (line) is divided into sub-domains and an evaluation mechanism is 

proposed to identify the topology relationship between each individual and the preference zone. To avoid pre-mature and to enhance 

the diversity of the population, a multi-external achieves methodology is proposed, with the goal of using different achieves in the 

mating pool evolutionary process in different searching stages of the algorithm. Mathematical test functions and a benchmark inverse 

problem, TEAM Workshop Problem 22, are used to testify the effectiveness and the efficiency of the proposed method. The results 

demonstrate that the proposed method can obtain well distributed Pareto solutions under the predefined directions of the decision 

maker’s preference with a less iteration number. 

 
Index Terms—Decision making, heuristic algorithms, inverse problems, Pareto optimization. 

 

I. AN IMPROVED LIGHT BEAM SEARCH METHOD 

A. Light Beam Search Method 

ROM a practical engineering perspective, a whole Pareto 

front of a multiobjective design problem is not always 

necessary. Instead, only a special part is attractive to a 

decision maker (DM). To take a DM’s preference into 

consideration in finding the Pareto front of a multiobjective 

design, a light beam search (LBS) method based on 

evolutionary multiobjective optimizations is proposed in [1]. 

Different from those based on reference points [2] and 

desirability functions [3], LBS method uses a direction defined 

by an aspiration point and a reservation point as the searching 

direction and a veto threshold to determine the desirable zone 

of Pareto front. However, in the original LBS method the 

desirable number of Pareto solutions is determined by both the 

veto threshold and the distance parameter , which will 

increase the complexity of the algorithm; and also a lot of 

iterations are needed to obtain the preference Pareto solutions. 

To simplify the algorithm and speed up the convergence, some 

improvements are proposed. 

B. Sub-domain Division and Evaluation  

In order to simplify the algorithm, the middle point is set as 

the crossing point of the “light direction” and the utopia plane 

(line) in the proposed method. Moreover, the veto threshold is 

defined as the neighbor zone on the utopia plane (line) around 

the middle point. In this way, the middle point and the veto 

threshold are known at the beginning of the searching process, 

and there is no need to evolve and calculate the middle point 

as well as the corresponding neighbor veto threshold through 

the whole searching phase. Sub-domains are defined by 

dividing the utopia plane (line) within the preference zone 

using a predefined step. An even step distribution can lead to a 

uniform sampling of the Pareto front. Sub-domain center is the 

geometry center of one sub-domain, which is used to compute 

the projection distance. A projection distance is the Euclidean 

distance between the sub-domain center and the projection 

point of an individual, which is used to criticize a specified 

individual on the same sub-domain. The probability of an 

individual projected on the same sub-domain to be selected as 

a candidate for next cycle of iterations is inversely 

proportional to its projection distance.  

To intuitively demonstrate the sub-domain division, a two 

objective minimizing problem is used. As shown in Fig. 1, 

Pareto solutions are those that any improvement in one 

objective can only occur through the worsening at least one 

other objective. z_r and z_v are the aspiration point and the 

reservation point supplied by the DM, which determine the 

searching direction. z_c is the middle point obtained by the 

searching direction and the utopia plane (line). A; B are the 

anchor points that correspond to the best possible values for 

respective individual objectives. Line AB is the utopia line 

determined by the anchor points. v1 and v2 are the veto 

thresholds. Zone CD is a preference zone on line AB, divided 

into some evenly distributed sub-domains using a predefined 

step; d1 and d2 are the projection distance of individuals E1 and 

E2, respectively. Individual E2 is better than E1 both in the rank 

and the projection evaluation, meanings that it has a high 

priority being selected in the mating pool selection process. 
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Fig. 1. Intuitive demonstration of sub-domain division 

C. Multi-External Achieves  

To enhance the diversity of the population and also provide 

different options to the mating pool, a multi-external archive 

F 



structure is used in the proposed method. More specially, A1 is 

defined as the achieve of the Pareto solutions with smallest 

projection distances in each sub-domain; A2 is used to keep the 

so far best solutions having both highest Pareto rank and 

smallest projection distance; A3 is consist of the whole Pareto 

solutions. At the beginning of the searching procedures, the 

size of A1 is small and the main purpose of the search is to 

explore enough objective space and converge to the Pareto 

front; consequently, the mating pool evolves based on A1, A2 

and A3. However, as the searching process continues, the main 

goal of the algorithm is transferred to locate the Pareto 

solutions precisely; the mating pool is thus chosen based on 

the competition of A1 and A2.  

D. Algorithm Description  

To facilitate the understanding of the proposed LBS method, 

its iterative procedures are summarized as follows: 

Step 1 Define the aspiration point z_r; the reservation point 

z_v; the veto threshold v; calculate the utopia plane (line) and 

the middle point z_c. 

Step 2 Divide the utopia plane (line) into sub-domains. 

Step 3 Define the multi-external archives A1, A2, A3. Define 

N is as the maximum iteration number. Initialize the iterative 

number t=0; Generate the initial population using Latin 

hypercube sampling [4]. 

Step 4 If t> N, go to Step 6. Otherwise, calculate the 

function values and the projection value of the individuals. 

Classify the individuals into the sub-domains and calculate the 

projection distance. Update the A1, A2, A3 based on both Pareto 

rank using the fast non-dominated sorting approach and the 

projection distance.  

Step 5 Mating pool is selected based on the duality 

tournament contest mechanism from A1, A2, A3. Generate new 

population; Go to Step 4.  

Step 6 Stop the algorithm. 

II. NUMERICAL RESULTS 

To validate and demonstrate the advantages of the proposed 

algorithm, two test functions (MOP2, MOP4) [5] and the 

TEAM Workshop problem22 [6] are solved. 

The parameters of the proposed algorithm for solving 

MOP2 are set as: nd =5, z_r=[0 0], z_ v=[1 1], v=[0.05 0.05], 

N=200. Fig. 2 gives the searched Pareto front using the 

proposed method, which demenstrates that the proposed 

method can find a preference segment of the whole Pareto 

front. The parameters of the proposed algorithm for solving 

MOP4 are set as: nd =[5 20], z_r=[-20 -12; -20 -6], z_ v=[-14 

-6; -14 0], v=[0.1 0.1;0.5 0.5], N=200. Fig. 3 presents the 

searched Pareto solutions using the proposed method, 

demonstrating that the proposed method can find the desired 

multi-directions of the Pareto front in a single run. The 

algorithm parameters for solving the TEAM Workshop 

Problem 22 are set as: nd =10, z_r=[0 0], z_ v=[0.08 0.08], 

v=[0.009 0.02], N=200. Fig. 4 depicts the searched Pareto 

solutions. The averaged iterative numbers used by the original 

LBS method and the proposed one are 20000 and 11361 with 

the same maximum iterative number N, respectively.  
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Fig. 2. The searched Pareto front of MOP2:  by using NBI method,  by 

using  the proposed method. 
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Fig. 3. The searched Pareto front of MOP4:  by using NBI method,  by 
using the proposed method. 
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Fig. 4. The searched Pareto front of Problem 22:  by using the NBI method, 

  by using the proposed method. 

Obviously, the proposed algorithm can find the arbitrary 

segments of the complete Pareto front under the preference of 

a DM with a relative small number of iterations compared to 

the original LBS method. 
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